Synthesis and characterization of potassium-doped multilayer graphene prepared by wet process using potassium hydroxide

Author:

Masuzawa TomoakiORCID,Okigawa YukiORCID,Ogawa ShuichiORCID,Takakuwa Yuji,Hatakeyama KazutoORCID,Yamada TakatoshiORCID

Abstract

Abstract Potassium (K) doping of multilayer graphene was demonstrated by means of a wet chemical process using potassium hydroxide (KOH) aqueous solution (KOH treatment). The presence of K atoms along the stacking direction was confirmed from depth profiles of 41K+ ions obtained by time-of-flight secondary ion mass spectroscopy (TOF-SIMS). The intensity images of 41K+ ions obtained by TOF-SIMS suggested that the K atoms existed throughout the whole area. For the KOH-treated multilayer graphene, no peak due to K intercalation between graphene layers was obtained by x-ray diffraction (XRD); in Raman spectra, splitting of the G-band peak and disappearance of the 2D-band peak were not observed. A graphite intercalation compound structure was not determined by either XRD or Raman results. However, the up-shift in the G-band peak position in the Raman spectra suggested that K atoms were doped in the graphene. X-ray photoelectron spectroscopy carbon 1s spectra implied that KOH treatment resulted in K-termination at the edges and/or domains of graphene. In addition, a C1s shoulder peak appeared at 1 eV higher binding energy compared to the C1s peak of pristine graphene. Temperature-dependent conductivity measurement results indicated that the conductivity of multilayer graphene was increased by KOH treatment. In addition, the conductivity increased with increasing temperature, which could be explained by band overlap.

Funder

Research Center for Biomedical Engineering

Japan Society for the Promotion of Science

Network Joint Research Center for Materials and Devices

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3