Quantum combinatorial designs and k-uniform states

Author:

Zang YajuanORCID,Facchi PaoloORCID,Tian ZihongORCID

Abstract

Abstract Goyeneche et al [2018 Phys. Rev. A 97 062326] introduced several classes of quantum combinatorial designs, namely quantum Latin squares, quantum Latin cubes, and the notion of orthogonality on them. They also showed that mutually orthogonal quantum Latin arrangements can be entangled in the same way in which quantum states are entangled. Moreover, they established a relationship between quantum combinatorial designs and a remarkable class of entangled states called k-uniform states, i.e. multipartite pure states such that every reduction to k parties is maximally mixed. In this article, we put forward the notions of incomplete quantum Latin squares and orthogonality on them and present construction methods for mutually orthogonal quantum Latin squares and mutually orthogonal quantum Latin cubes. Furthermore, we introduce the notions of generalized mutually orthogonal quantum Latin squares and generalized mutually orthogonal quantum Latin cubes, which are equivalent to quantum orthogonal arrays of size d 2 and d 3, respectively, and thus naturally provide two- and three-uniform states.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modelling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference50 articles.

1. Quantum cryptography using any two nonorthogonal states;Bennett;Phys. Rev. Lett.,1992

2. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels;Bennett;Phys. Rev. Lett.,1993

3. Conjugate orthogonal Latin squares with equal-sized holes;Bennett;Ann. Discrete Math.,1987

4. On the existence of COLS with equal-sized holes;Bennett;Ars. Comb.,1988

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Quantum Latin Squares in Quantum Information Theory;2024 International Conference on Quantum Communications, Networking, and Computing (QCNC);2024-07-01

2. Multipartite entanglement and quantum error identification in D -dimensional cluster states;Physical Review A;2023-08-25

3. Quantum k-Uniform States From Quantum Orthogonal Arrays;International Journal of Theoretical Physics;2023-03-23

4. Mutually unbiased maximally entangled bases from difference matrices;Journal of Physics A: Mathematical and Theoretical;2022-10-03

5. Construction of Binary Quantum Error-Correcting Codes from Orthogonal Array;Entropy;2022-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3