Conformal Fisher information metric with torsion

Author:

Pal KunalORCID,Pal Kuntal,Sarkar TapobrataORCID

Abstract

Abstract We consider torsion in parameter manifolds that arises via conformal transformations of the Fisher information metric, and define it for information geometry of a wide class of physical systems. The torsion can be used to differentiate between probability distribution functions that otherwise have the same scalar curvature and hence define similar geometries. In the context of thermodynamic geometry, our construction gives rise to a new scalar—the torsion scalar defined on the manifold, while retaining known physical features related to other scalar quantities. We analyse this in the context of the Van der Waals and the Curie–Weiss models. In both cases, the torsion scalar has non trivial behaviour on the spinodal curve. We also briefly comment on the one dimensional classical Ising model and show that the torsion scalar diverges exponentially near criticality.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3