Phase space geometry of general quantum energy transitions

Author:

de Almeida Alfredo M OzorioORCID

Abstract

Abstract The mixed density operator for coarsegrained eigenlevels of a static Hamiltonian is represented in phase space by the spectral Wigner function, which has its peak on the corresponding classical energy shell. The action of trajectory segments along the shell determine the phase of the Wigner oscillations in its interior. The classical transitions between any pair of energy shells, driven by a general external time dependent Hamiltonian, also have a smooth probability density. It is shown here that a further contribution to the transition between the corresponding pair of coarsegrained energy levels, which oscillates with either energy, or the driving time, is determined by four trajectory segments (two in the pair of energy shells and two generated by the driving Hamiltonian) that join exactly to form a closed compound orbit (CCO). In its turn, this sequence of segments belongs to the semiclassical expression of a compound unitary operator that combines four quantum evolutions: a pair generated by the static internal Hamiltonian and a pair generated by the driving Hamiltonian. The CCOs are shown to belong to continuous families, which are initially seeded at points where the classical flow generated by both Hamiltonians commute.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3