Accurate numerical determination of a self-preserving quantum vortex ring

Author:

Zuccher SimoneORCID,Caliari MarcoORCID

Abstract

Abstract We compute simultaneously the translational speed, the magnitude and the phase of a quantum vortex ring for a wide range of radii, within the Gross–Pitaevskii model, by imposing its self preservation in a co-moving reference frame. By providing such a solution as the initial condition for the time-dependent Gross–Pitaevskii equation, we verify a posteriori that the ring’s radius and speed are well maintained in the reference frame moving at the computed speed. Convergence to the numerical solution is fast for large values of the radius, as the wavefunction tends to that of a straight vortex, whereas a continuation technique and interpolation of rough solutions are needed to reach convergence as the ring tends to a disk. Comparison with other strategies for generating a quantum ring reveals that all of them seem to capture quite well the translational speed, whereas none of them seems to preserve the radius with the accuracy reached in the present work.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference31 articles.

1. LXIII. On Integrals of the hydrodynamical equations, which express vortex-motion;Helmholtz;Philos. Mag.,1867

2. On vortex motion;Thomson;Trans. Roy. Soc. Edinburgh,1869

3. Vortex rings;Shariff;Annu. Rev. Fluid Mech.,1992

4. Dynamics of thin vortex rings;Sullivan;J. Fluid Mech.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Topological Approach to Vortex Knots and Links;Lecture Notes in Mathematics;2024

2. Creation of quantum knots and links driven by minimal surfaces;Journal of Fluid Mechanics;2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3