Creation of quantum knots and links driven by minimal surfaces

Author:

Zuccher SimoneORCID,Ricca Renzo L.ORCID

Abstract

Using an improved numerical code we investigate the creation and evolution of quantum knots and links as defects of the Gross–Pitaevskii equation. The particular constraints put on quantum hydrodynamics make this an ideal context for application of geometric and topological methods to investigate dynamical properties. Evolutionary processes are classified into three generic scenarios representing (i) direct topological cascade and collapse, (ii) structural and topological cycles, and (iii) inverse topological cascade of complex structures. Several examples and test cases are studied; the head-on collision of quantum vortex rings and the creation of a trefoil knot from initially unlinked, unknotted loops are realized for the first time. Each type of scenario is studied by carrying out a detailed evaluation of fundamental geometric and dynamical properties associated with evolution. Direct topological cascade that governs the decay of complex structures to small-scale vortex rings is identified by writhe measures, while picks of total curvature are found to provide a clear signature of reconnection events. We demonstrate that isophase minimal surfaces spanning knots and links have a privileged role in the decay process by detecting surface energy relaxation of complex structures. Minimal surfaces are shown to be critical markers for energy and prove to be appropriate detectors for the evolution of complex systems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological approaches to knotted electric charge distributions;Partial Differential Equations and Applications;2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3