Poisson–Hopf deformations of Lie–Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra

Author:

Ballesteros AngelORCID,Campoamor-Stursberg RutwigORCID,Fernández-Saiz EduardoORCID,Herranz Francisco JORCID,Lucas Javier deORCID

Abstract

Abstract The formalism for Poisson–Hopf (PH) deformations of Lie–Hamilton (LH) systems, recently proposed in Ballesteros Á et al (2018 J. Phys. A: Math. Theor. 51 065202), is refined in one of its crucial points concerning applications, namely the obtention of effective and computationally feasible PH deformed superposition rules for prolonged PH deformations of LH systems. The two new notions here proposed are a generalization of the standard superposition rules and the concept of diagonal prolongations for Lie systems, which are consistently recovered under the non-deformed limit. Using a technique from superintegrability theory, we obtain a maximal number of functionally independent constants of the motion for a generic prolonged PH deformation of a LH system, from which a simplified deformed superposition rule can be derived. As an application, explicit deformed superposition rules for prolonged PH deformations of LH systems based on the oscillator Lie algebra h 4 are computed. Moreover, by making use that the main structural properties of the book subalgebra b 2 of h 4 are preserved under the PH deformation, we consider prolonged PH deformations based on b 2 as restrictions of those for h 4 -LH systems, thus allowing the study of prolonged PH deformations of the complex Bernoulli equations, for which both the constants of the motion and the deformed superposition rules are explicitly presented.

Funder

Consejería de Educación, Junta de Castilla y León

Universidad Complutense de Madrid

Narodowe Centrum Nauki

Ministerio de Ciencia e Innovación

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference57 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3