Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations

Author:

Campoamor-Stursberg Rutwig12,Fernández-Saiz Eduardo3,Herranz Francisco J.4

Affiliation:

1. Interdisciplinary Mathematical Institute (IMI), Complutense University, Madrid 28040, Spain

2. Departament of Algebra, Geometry and Topology, Faculty of Mathematics, Complutense University, Madrid 28040, Spain

3. Department of Mathematics and Data Science, San Pablo-CEU University, Alcorcón 28925, Spain

4. Departament of Physics, University of Burgos, Burgos 09001, Spain

Abstract

<abstract><p>Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by $ \mathfrak{b}_2 $ and $ \mathfrak{h}_4 $, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry $ \mathfrak{h}_6 $, according to the embedding chain $ \mathfrak{b}_2\subset \mathfrak{h}_4\subset \mathfrak{h}_6 $, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference58 articles.

1. N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, 2 Eds., London: Griffin, 1975.

2. H. W. Hethcote, Three basic epidemiological models, In: S. A. Levin, T. G. Hallam, L. J. Gross, Applied mathematical ecology, Biomathematics, Berlin: Springer, 18 (1989), 119–144. https://doi.org/10.1007/978-3-642-61317-3_5

3. F. Hoppensteadt, P. Waltman, A problem in the theory of epidemics, Math. Biosci., 9 (1970), 71–91. https://doi.org/10.1016/0025-5564(70)90094-5

4. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

5. H. Abbey, An examination of the Reed-Frost theory of epidemics, Hum. Biol., 24 (1952), 201–233.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3