On the universality of noiseless linear estimation with respect to the measurement matrix

Author:

Abbara AliaORCID,Baker Antoine,Krzakala Florent,Zdeborová Lenka

Abstract

Abstract In a noiseless linear estimation problem, the goal is to reconstruct a vector from the knowledge of its linear projections . There have been many theoretical works concentrating on the case where the matrix is a random i.i.d. one, but a number of heuristic evidence suggests that many of these results are universal and extend well beyond this restricted case. Here we revisit this problem through the prism of development of message passing methods, and consider not only the universality of the -transition, as previously addressed, but also the one of the optimal Bayesian reconstruction. We observed that the universality extends to the Bayes-optimal minimum mean-squared (MMSE) error, and to a range of structured matrices.

Funder

CFM Foundation for research - ENS

Agence Nationale de la Recherche

ERC under the European Union’s Horizon 2020 Research and Innovation Program

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universality of approximate message passing with semirandom matrices;The Annals of Probability;2023-09-01

2. On Capacity Achieving of Sparse Regression Code with the Row-Orthogonal Matrix;2022 IEEE 22nd International Conference on Communication Technology (ICCT);2022-11-11

3. Universality of Linearized Message Passing for Phase Retrieval With Structured Sensing Matrices;IEEE Transactions on Information Theory;2022-11

4. Massive Unsourced Random Access Based on Uncoupled Compressive Sensing: Another Blessing of Massive MIMO;IEEE Journal on Selected Areas in Communications;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3