Abstract
Abstract
In a noiseless linear estimation problem, the goal is to reconstruct a vector
from the knowledge of its linear projections
. There have been many theoretical works concentrating on the case where the matrix
is a random i.i.d. one, but a number of heuristic evidence suggests that many of these results are universal and extend well beyond this restricted case. Here we revisit this problem through the prism of development of message passing methods, and consider not only the universality of the
-transition, as previously addressed, but also the one of the optimal Bayesian reconstruction. We observed that the universality extends to the Bayes-optimal minimum mean-squared (MMSE) error, and to a range of structured matrices.
Funder
CFM Foundation for research - ENS
Agence Nationale de la Recherche
ERC under the European Union’s Horizon 2020 Research and Innovation Program
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献