Permutation invariant Gaussian two-matrix models

Author:

Barnes GeorgeORCID,Padellaro AdrianORCID,Ramgoolam SanjayeORCID

Abstract

Abstract We construct the general permutation invariant Gaussian two-matrix model for matrices of arbitrary size D. The parameters of the model are given in terms of variables defined using the representation theory of the symmetric group S D . A correspondence is established between the permutation invariant polynomial functions of the matrix variables (the observables of the model) and directed colored graphs, which sheds light on stability properties in the large D counting of these invariants. A refined counting of the graphs is given in terms of double cosets involving permutation groups defined by the local structure of the graphs. Linear and quadratic observables are transformed to an S D representation theoretic basis and are used to define the convergent Gaussian measure. The perturbative rules for the computation of expectation values of graph-basis observables of any degree are given in terms of the representation theoretic parameters. Explicit results for a number of observables of degree up to four are given along with a Sage programme that computes general expectation values.

Funder

Science and Technology Facilities Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference57 articles.

1. Characteristic vectors of bordered matrices with infinite dimensions;Wigner;Ann. Math.,1955

2. A Brownian-motion model for the eigenvalues of a random matrix;Dyson;J. Math. Phys.,1962

3. Random-matrix theory of quantum transport;Beenakker;Rev. Mod. Phys.,1997

4. Random-matrix theories in quantum physics: common concepts;Guhr;Phys. Rep.,1998

5. Random matrix theory and its innovative applications;Edelman,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3