Abstract
Abstract
The large N generating functions for the counting of chiral operators in
, four-dimensional quiver gauge theories have previously been obtained in terms of the weighted adjacency matrix of the quiver diagram. We introduce the methods of multi-variate asymptotic analysis to study this counting in the limit of large charges. We describe a Hagedorn phase transition associated with the asymptotics, which refines and generalizes known results on the 2-matrix harmonic oscillator. Explicit results are obtained for two infinite classes of quiver theories, namely the generalized clover quivers and affine
orbifold quivers.
Subject
General Physics and Astronomy,Mathematical Physics,Modelling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献