Self-heterodyned detection of dressed state coherences in helium by noncollinear extreme ultraviolet wave mixing with attosecond pulses

Author:

Fidler Ashley PORCID,Warrick Erika R,Marroux Hugo J BORCID,Bloch Etienne,Neumark Daniel MORCID,Leone Stephen RORCID

Abstract

Abstract Noncollinear wave-mixing spectroscopies with attosecond extreme ultraviolet (XUV) pulses provide unprecedented insight into electronic dynamics. In infrared and visible regimes, heterodyne detection techniques utilize a reference field to amplify wave-mixing signals while simultaneously allowing for phase-sensitive measurements. Here, we implement a self-heterodyned detection scheme in noncollinear wave-mixing measurements with a short attosecond XUV pulse train and two few-cycle near infrared (NIR) pulses. The initial spatiotemporally overlapped XUV and NIR pulses generate a coherence of both odd (1snp) and even (1sns and 1snd) parity states within gaseous helium. A variably delayed noncollinear NIR pulse generates angularly-dependent four-wave mixing signals that report on the evolution of this coherence. The diffuse angular structure of the XUV harmonics underlying these emission signals is used as a reference field for heterodyne detection, leading to cycle oscillations in the transient wave-mixing spectra. With this detection scheme, wave-mixing signals emitting from at least eight distinct light-induced, or dressed, states can be observed, in contrast to only one light induced state identified in a similar homodyne wave-mixing measurement. In conjunction with the self-heterodyned detection scheme, the noncollinear geometry permits the conclusive identification and angular separation of distinct wave-mixing pathways, reducing the complexity of transient spectra. These results demonstrate that the application of heterodyne detection schemes can provide signal amplification and phase-sensitivity, while maintaining the versatility and selectivity of noncollinear attosecond XUV wave-mixing spectroscopies. These techniques will be important tools in the study of ultrafast dynamics within complex chemical systems in the XUV regime.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3