Developing a photonic hardware platform for brain-inspired computing based on 5 × 5 VCSEL arrays

Author:

Heuser T,Pflüger MORCID,Fischer IORCID,Lott J AORCID,Brunner DORCID,Reitzenstein SORCID

Abstract

Abstract Brain-inspired computing concepts like artificial neural networks have become promising alternatives to classical von Neumann computer architectures. Photonic neural networks target the realizations of neurons, network connections and potentially learning in photonic substrates. Here, we report the development of a nanophotonic hardware platform of fast and energy-efficient photonic neurons via arrays of high-quality vertical cavity surface emitting lasers (VCSELs). The developed 5 × 5 VCSEL arrays provide high optical injection locking efficiency through homogeneous fabrication combined with individual control over the laser wavelengths. Injection locking is crucial for the reliable processing of information in VCSEL-based photonic neurons, and we demonstrate the suitability of the VCSEL arrays by injection locking measurements and current-induced spectral fine-tuning. We find that our investigated array can readily be tuned to the required spectral homogeneity, and as such show that VCSEL arrays based on our technology can act as highly energy efficient and ultra-fast photonic neurons for next generation photonic neural networks. Combined with fully parallel photonic networks our substrates are promising for ultra-fast operation reaching 10 s of GHz bandwidths, and we show that a single non-linear transformation based on our lasers will consume only about 100 fJ per VCSEL, which is highly competitive, compared to other platforms.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3