Integrated nanolasers via complex engineering of radiationless states

Author:

Totero Gongora Juan SORCID,Fratalocchi AndreaORCID

Abstract

Abstract The development of compact and energy-efficient miniaturised lasers is a critical challenge in integrated non-linear photonics. Current research focuses on the integration of subwavelength all-dielectric lasers in CMOS compatible platforms. These systems provide a viable alternative to state-of-the-art nanoplasmonic sources, whose practicality is often hindered by high metal losses. The efficiency of dielectric nanolasers, however, is affected by the diffraction limit of light, which restricts the degree of localisation achievable with standard resonator modes. The recent development of new types of radiationless states has brought a sharp innovation in the field of subwavelength dielectric lasers. Radiationless states are exotic electromagnetic solutions that originate from the complex superposition and interaction of several resonator modes. They are associated with a high degree of near-field localisation which makes them particularly advantageous for non-linear photonics applications. In this work, we provide an overview of the most recent theoretical and experimental efforts toward the development of integrated lasers and ultrafast sources based on the amplification of exotic radiationless states. In particular, we focus our attention on two specific types of radiationless states: optical anapoles and Bound States in the Continuum (BIC). By discussing their differences and similarities, we provide a unifying view of these distinct research areas and outline possible future directions for these innovative platforms.

Funder

Leverhulme Trust

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3