Improving STED microscopy with SUPPOSe: enhancing resolution from a single-image

Author:

Toscani MicaelaORCID,Lacapmesure Axel MORCID

Abstract

Abstract Here we apply the SUPPOSe algorithm on images acquired using Stimulated Emission Depletion (STED) microscopy with the aim of improving the resolution limit achieved. We processed images of the nuclear pore complex (NPC) from cell lines in which the Nup96 nucleoporin was endogenously labeled. This reference protein forms a ring whose diameter is ∼107 nm with 8 corners ∼42 nm apart from each other. The stereotypic arrangement of proteins in the NPC has been used as reference structures to characterize the performance of a variety of microscopy techniques. STED microscopy images resolve the ring arrangement but not the eightfold symmetry of the NPC. After applying the SUPPOSe algorithm to the STED images, we were able to solve the octagonal structure of the NPC. After processing 562 single NPC, the average radius of the NPC was found to be R = 54.2 ± 2.9 nm, being consistent with the theoretical distances of this structure. To verify that the solutions obtained are compatible with a NPC-type geometry, we rotate the solutions to optimally fit an eightfold-symmetric pattern and we count the number of corners that contain at least one localization. Fitting a probabilistic model to the histogram of the number of bright corners gives an effective labeling efficiency of 31%, which is in agreement with the values reported in for other cell lines and ligands used in Single Molecule Localization microscopy, showing that SUPPOSe can reliably retrieve sub-resolution, nanoscale objects from single acquisitions even in noisy conditions.

Funder

Universidad de Buenos Aires

Air Force Office of Scientific Research

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3