Rapid (FLASH-FLIM) imaging of protoporphyrin IX in a lipid mixture using a CMOS based widefield fluorescence lifetime imaging camera in real time for margin demarcation applications

Author:

Sagoo Kulwinder,Cumberbatch NathanORCID,Holland Adam,Hungerford GrahamORCID

Abstract

Abstract The fluorescence from protoporphyrin IX (PpIX) has been employed to characterise cellular activity and assist in the visualisation of tumour cells. Its formation can be induced by 5-aminolevulonic acid (5-ALA) which is metabolised by tumour cells to form PpIX. The PpIX is localised within the cells, rather than spreading into the vascular system. This, plus its photophysics, exhibits potential in photodynamic therapy. Hence its study and the ability to rapidly image its localisation is of importance, especially in the field of fluorescence guided surgery. This has led to investigations using tissue phantoms and widefield intensity imaging. Aggregation or the presence of photoproducts can alter PpIX emission, which has implications using widefield imaging and a broad wavelength range detection. The use of the fluorescence lifetime imaging (FLIM) is therefore advantageous as it can distinguish between the emissive species as they exhibit different fluorescence lifetimes. Here we use PpIX in a construct consisting of lipid mixture (Intralipid), employed to simulate fat content and optical scattering, in a gellan gum matrix. PpIX in intralipid in aqueous solution was injected into the gellan host to form inclusions. The samples are imaged using commercial widefield TCSPC camera based on a sensor chip with 192 × 128 pixels. Each pixel contains both detection and photon timing enabling the Fluorescence Lifetime Acquisition by Simultaneous Histogramming (FLASH). This ‘FLASH-FLIM’ approach enables widefield fluorescence lifetime images, displayed in real time to be acquired, which has potential for use in visualising tumour boundaries.

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3