Systematic solitary waves from their linear limits in two-component Bose–Einstein condensates with unequal dispersion coefficients

Author:

Wang WenlongORCID

Abstract

Abstract We systematically construct vector solitary waves in harmonically trapped one-dimensional two-component Bose–Einstein condensates with unequal dispersion coefficients by a numerical continuation in chemical potentials from the respective analytic low-density linear limits to the high-density nonlinear Thomas-Fermi regime. The main feature of the linear states herein is that the component with the larger quantum number has instead a smaller linear eigenenergy, enabled by suitable unequal dispersion coefficients, leading to new series of solutions compared with the states similarly obtained in the equal dispersion setting. Particularly, the lowest-lying series gives the well-known dark-anti-dark waves, and the second series yields the dark-multi-dark states, and the following series become progressively more complex in their wave structures. The Bogoliubov-de Gennes spectra analysis shows that most of these states bear unstable modes, but they can be long-lived and remarkably all of them can be fully stabilized in suitable parameter regimes.

Funder

Science Speciality Program of Sichuan University

Fundamental Research Funds for the Central Universities, China

National Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3