Domain walls and vector solitons in the coupled nonlinear Schrödinger equation

Author:

Snee David D J M,Ma Yi-PingORCID

Abstract

Abstract We outline a program to classify domain walls (DWs) and vector solitons in the 1D two-component coupled nonlinear Schrödinger (CNLS) equation without restricting the signs or magnitudes of any coefficients. The CNLS equation is reduced first to a complex ordinary differential equation (ODE), and then to a real ODE after imposing a restriction. In the real ODE, we identify four possible equilibria including ZZ, ZN, NZ, and NN, with Z(N) denoting a zero (nonzero) value in a component, and analyze their spatial stability. We identify two types of DWs including asymmetric DWs between ZZ and NN and symmetric DWs between ZN and NZ. We identify three codimension-1 mechanisms for generating vector solitons in the real ODE including heteroclinic cycles, local bifurcations, and exact solutions. Heteroclinic cycles are formed by assembling two DWs back-to-back and generate extended bright-bright (BB), dark-dark (DD), and dark-bright (DB) solitons. Local bifurcations include the Turing (Hamiltonian–Hopf) bifurcation that generates Turing solitons with oscillatory tails and the pitchfork bifurcation that generates DB, bright-antidark, DD, and dark-antidark solitons with monotonic tails. Exact solutions include scalar bright and dark solitons with vector amplitudes. Any codimension-1 real vector soliton can be numerically continued into a codimension-0 family. Complex vector solitons have two more parameters: a dark or antidark component can be numerically continued in the wavenumber, while a bright component can be multiplied by a constant phase factor. We introduce a numerical continuation method to find real and complex vector solitons and show that DWs and DB solitons in the immiscible regime can be related by varying bifurcation parameters. We show that collisions between two DB solitons with a nonzero phase difference in their bright components typically feature a mass exchange that changes the frequencies and phases of the two bright components and the two soliton velocities.

Funder

Northumbria University

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference79 articles.

1. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media;Shabat;Sov. Phys.-JETP,1972

2. On the theory of two-dimensional stationary self-focusing of electromagnetic waves;Manakov;Sov. Phys.-JETP,1974

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3