Abstract
Abstract
Entanglement generation and control of two spatially separated asymmetric quantum dots with broken inversion symmetry and mediated by a photonic cavity is studied using a quantum master equation formalism. The quantum dots are coherently driven by a bichromatic laser consisting of a strong optical field nearly resonant with the optical transition of each quantum dot, and a low frequency field. The optical field dresses each quantum dot, and due to the presence of large permanent dipole moments in the quantum dots they are coupled by the low frequency field. We make use of the generated dressed-state scheme for entanglement control. The master equation which describes the interaction with the cavity modes and the coherent fields is numerically solved. In order to gain some insight on the role of the external parameters on entanglement, an effective Hamiltonian for the atomic subsystem is derived in the dressed state representation by adiabatically eliminating the cavity field operators. It is found that steady-state entanglement can be controlled by means of the amplitude and frequency of the low frequency field.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献