Strong coupling dynamics of driven quantum systems with permanent dipoles

Author:

Burgess Adam12ORCID,Florescu Marian2ORCID,Rouse Dominic M.34ORCID

Affiliation:

1. Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey 1 , Guildford GU2 7XH, United Kingdom

2. Department of Physics and Advanced Technology Institute, University of Surrey 2 , Guildford GU2 7XH, United Kingdom

3. School of Physics and Astronomy, University of Glasgow 3 , Glasgow G12 8QQ, United Kingdom

4. Department of Physics and Astronomy, University of Manchester 4 , Oxford Road, Manchester M13 9PL, United Kingdom

Abstract

Many optically active systems possess spatially asymmetric electron orbitals. These generate permanent dipole moments, which can be stronger than the corresponding transition dipole moments, significantly affecting the system dynamics and creating polarized Fock states of light. We derive a master equation for these systems with an externally applied driving field by employing an optical polaron transformation that captures the photon mode polarization induced by the permanent dipoles. This provides an intuitive framework to explore their influence on the system dynamics and emission spectrum. We find that permanent dipoles introduce multiple-photon processes and a photon sideband, which causes substantial modifications to single-photon transition dipole processes. In the presence of an external drive, permanent dipoles lead to an additional process that we show can be exploited to control the decoherence and transition rates. We derive the emission spectrum of the system, highlighting experimentally detectable signatures of optical polarons, and measurements that can identify the parameters in the system Hamiltonian, the magnitude of the differences in the permanent dipoles, and the steady-state populations of the system.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3