3D printed fiber-optic nanomechanical bioprobe

Author:

Zou Mengqiang,Liao ChangruiORCID,Chen Yanping,Xu Lei,Tang Shuo,Xu Gaixia,Ma Ke,Zhou Jiangtao,Cai Zhihao,Li Bozhe,Zhao Cong,Xu Zhourui,Shen Yuanyuan,Liu ShenORCID,Wang Ying,Gan Zongsong,Wang HaoORCID,Zhang Xuming,Kasas Sandor,Wang Yiping

Abstract

Abstract Ultrasensitive nanomechanical instruments, e.g. atomic force microscopy (AFM), can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes. However, these instruments are limited because of their size and complex feedback system. In this study, we demonstrate a miniature fiber optical nanomechanical probe (FONP) that can be used to detect the mechanical properties of single cells and in vivo tissue measurements. A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography. To realize stiffness matching of the FONP and sample, a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics. As a proof-of concept, three FONPs with spring constants varying from 0.421 N m−1 to 52.6 N m−1 by more than two orders of magnitude were prepared. The highest microforce sensitivity was 54.5 nm μN−1 and the detection limit was 2.1 nN. The Young’s modulus of heterogeneous soft materials, such as polydimethylsiloxane, muscle tissue of living mice, onion cells, and MCF-7 cells, were successfully measured, which validating the broad applicability of this method. Our strategy provides a universal protocol for directly programming fiber-optic AFMs. Moreover, this method has no special requirements for the size and shape of living biological samples, which is infeasible when using commercial AFMs. FONP has made substantial progress in realizing basic biological discoveries, which may create new biomedical applications that cannot be realized by current AFMs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Innovation Commission of Shenzhen

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3