Abstract
Abstract
Multi-level programmable photonic integrated circuits (PICs) and optical metasurfaces have gained widespread attention in many fields, such as neuromorphic photonics, optical communications, and quantum information. In this paper, we propose pixelated programmable Si3N4 PICs with record-high 20-level intermediate states at 785 nm wavelength. Such flexibility in phase or amplitude modulation is achieved by a programmable Sb2S3 matrix, the footprint of whose elements can be as small as 1.2 μm, limited only by the optical diffraction limit of an in-house developed pulsed laser writing system. We believe our work lays the foundation for laser-writing ultra-high-level (20 levels and even more) programmable photonic systems and metasurfaces based on phase change materials, which could catalyze diverse applications such as programmable neuromorphic photonics, biosensing, optical computing, photonic quantum computing, and reconfigurable metasurfaces.
Funder
National Nature Science Foundation of China
National Key Research and Development Program of China
2021 Postdoctoral Innovation Research Plan of Hubei Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献