Laser-induced microjet-assisted ablation for high-quality microfabrication

Author:

Guo Yang,Qiu Pei,Xu ShaolinORCID,Cheng Gary J

Abstract

Abstract Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m s−1 in its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation (LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining.

Funder

Guangdong Provincial University Science and Technology Program

Shenzhen Science and Technology Programs

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3