Sintering of alumina nanoparticles: comparison of interatomic potentials, molecular dynamics simulations, and data analysis

Author:

Roy SORCID,Prakash AORCID,Sandfeld SORCID

Abstract

Abstract Sintering of alumina nanoparticles is of interest both from the view of fundamental research as well as for industrial applications. Atomistic simulations are tailor-made for understanding and predicting the time- and temperature-dependent sintering behaviour. However, the quality and predictability of such analysis is strongly dependent on the performance of the underlying interatomic potentials. In this work, we investigate and benchmark four empirical interatomic potentials and discuss the resulting properties and drawbacks based on experimental and density functional theory data from the literature. The potentials, which have different origins and formulations, are then used in molecular dynamics (MD) simulations to perform a systematic study of the sintering process. To analyse the results, we develop a number of tailored data analysis approaches that are able to characterise and quantify the sintering process. Subsequently, the disparities in the sintering behaviour predicted by the potentials are critically discussed. Finally, we conclude by providing explanations for the differences in performance of the potentials, together with recommendations for MD sintering simulations of alumina.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3