Do we really need machine learning interatomic potentials for modeling amorphous metal oxides? Case study on amorphous alumina by recycling an existing ab initio database

Author:

Gramatte SimonORCID,Turlo VladyslavORCID,Politano OlivierORCID

Abstract

Abstract In this study, we critically evaluate the performance of various interatomic potentials/force fields against a benchmark ab initio database for bulk amorphous alumina. The interatomic potentials tested in this work include all major fixed charge and variable charge models developed to date for alumina. Additionally, we introduce a novel machine learning interatomic potential constructed using the NequIP framework based on graph neural networks. Our findings reveal that the fixed-charge potential developed by Matsui and coworkers offers the most optimal balance between computational efficiency and agreement with ab initio data for stoichiometric alumina. Such balance cannot be provided by machine learning potentials when comparing performance with Matsui potential on the same computing infrastructure using a single Graphical Processing Unit. For non-stoichiometric alumina, the variable charge potentials, in particular ReaxFF, exhibit an impressive concordance with density functional theory calculations. However, our NequIP potentials trained on a small fraction of the ab initio database easily surpass ReaxFF in terms of both accuracy and computational performance. This is achieved without large overhead in terms of potential fitting and fine-tuning, often associated with the classical potential development process as well as training of standard deep neural network potentials, thus advocating for the use of data-efficient machine learning potentials like NequIP for complex cases of non-stoichiometric amorphous oxides.

Funder

National Center of Competence in Research Materials’ Revolution: Computational Design and Discovery of Novel Materials

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3