Monte Carlo-Discrete Dislocation Dynamics: a technique for studying the formation and evolution of dislocation structures

Author:

Deka Nipal,Sills Ryan BORCID

Abstract

Abstract A novel Monte Carlo (MC) based solver for discrete dislocation dynamics (DDD) has been developed, by which dislocation lines are inserted to the system in succession subject to a user-defined acceptance criterion. Utilizing this solver, dislocation structure evolution can be examined in a controlled fashion that is not possible using conventional DDD methods. The outcomes of the MC-DDD simulations establish for the first time that dislocation wall structures can adopt a characteristic width that naturally arises from elastic interactions within the network. This characteristic width does not alter as additional dislocation lines are inserted and the density in the wall increases, meaning it is independent of the mean dislocation spacing. However, the wall width is influenced by the acceptance criterion used during MC steps; the wall gets thinner as the interactions within the wall become more attractive. Finally, we demonstrate that algorithmic aspects of MC-DDD simulations can provide insights into structure evolution. Overall, this new MC-DDD technique will allow systematic studies of dislocation structures, providing unprecedented insight into the underlying mechanics.

Funder

Sandia National Laboratories

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference43 articles.

1. Dislocation pattern formation in metals;Kratochvil;Rev. Phys. Appl.,1988

2. Dislocation patterns: experiment, theory and simulation;Kubin,1996

3. The theory of dislocation-based crystal plasticity;Kuhlmann-Wilsdorf;Phil. Mag. A,1999

4. Recent developments in dislocation pattern dynamics: current opinions and perspectives;Lyu;J. Micromech. Mol. Phys.,2018

5. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals;Li;Prog. Mater. Sci.,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3