Computer simulation of microstructure development in powder-bed additive manufacturing with crystallographic texture

Author:

Pauza J GORCID,Tayon W A,Rollett A DORCID

Abstract

Abstract Parts produced via laser powder-bed fusion additive manufacturing exhibit complex microstructures that depend on processing variables and often vary widely in crystallographic texture and grain morphology. The need to understand, predict, and control these microstructural variations motivates the development of modeling tools capable of accurately predicting LPBF microstructures. Monte Carlo (MC) Potts models have been employed to successfully model the formation of grain structures in additively manufactured parts but have lacked the ability to simulate crystallographic texture. We present an extension of the MC Potts model that assigns an orientation to each grain and penalizes growth of solid into the fusion zone based on proximity of the nearest 〈100〉 crystal direction to the local temperature gradient direction. This allows for crystallographically selective growth to drive texture formation during the development of the solidification microstructure in each melt track. LPBF builds of alloy 718 with a unidirectional scan pattern provided microstructures with substantial variations in grain size, grain morphology, and texture. These distinctive albeit atypical microstructures were used to validate the simulation method, i.e. good agreement was obtained between the simulated and experimental grain shapes and textures.

Funder

Langley Research Center

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3