Atomic simulation of the effect of supersonic fine particle bombardment process parameters on the mechanical properties of polycrystalline γ-TiAl alloy

Author:

Yu Zhaoliang,Cao HuiORCID,Zhou Baocheng,Liu Jianhui,Feng RuichengORCID,Wang Jingqi,Yang Wenle

Abstract

Abstract γ-TiAl alloys are the most promising lightweight high-temperature structural materials, but the materials often fail from the surface, which is mainly attributed to the stress state of the material surface. In this paper, the orthogonal experiment method and molecular dynamics modeling are used to choose a set of the best process parameters for supersonic fine particle bombardment (SFPB). Furthermore, by determining the optimal process parameters, this study examines the influence of residual stress distribution on the mechanical properties of the material under various process conditions. The simulation results reveal that the residual stress distribution is minimally impacted by particle radius, nonetheless, maintaining a moderate level of compressive residual stress within a specific range can substantially augment both the tensile strength and indentation hardness. An increase in the number of particles results in a more uniform distribution of surface residual stresses. Conversely, an increase in the number of impacts causes stress concentration to intensify at the particle’s contact point, and thus a deeper distribution of residual stress is observed. This study illustrates how the mechanical properties of polycrystalline γ-TiAl alloy are affected by the process parameters of SFPB in terms of atomic size in order to develop and select the optimal SFPB parameters.

Funder

Ruicheng Feng

Hui Cao

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3