Effect of thermo-mechanical loading on machining induced residual stresses in ultrasonic vibration assisted turning of Ti6Al4V alloy

Author:

Venkata Sivareddy Dondeti1ORCID,Krishna Pasam Vamsi2ORCID,Venu Gopal Anne2

Affiliation:

1. Mechanical Engineering Department, DVR & Dr. HS MIC College of Technology, Kanchikacharla, India

2. Mechanical Engineering Department, National Institute of Technology Warangal, Warangal, Telangana, India

Abstract

The study of residual stresses induced during machining is of considerable importance due to their effect on fatigue life of machined components. The metallurgical changes occurred due to thermo-mechanical phenomenon in cutting process affects the distribution of residual stress in machined components. Ultrasonic vibration assisted turning (UVAT) is effective machining process for low thermal conductivity materials like Ti6Al4V alloy and improves the surface characteristics by reducing cutting force and cutting temperature. In this paper, experimental and finite element (FE) studies are conducted to study the circumferential and axial residual stress distribution in UVAT of Ti6Al4V alloy. FE model is developed to study the effect of vibrating parameter (ultrasonic power intensity) and cutting parameters (cutting speed, feed rate, and depth of cut) on the residual stress profiles of machined surface. The FE simulation results of cutting force and cutting temperature are validated with experimental results. The circumferential and axial surface residual stresses obtained from FE simulation are also compared with experimental results using X-ray diffraction method. The effect of thermo-mechanical loading on residual stress distribution is analyzed with respect to force components (cutting force and feed force) and cutting temperature. Finally, the effect of each cutting parameter on subsurface layer of machined component is analyzed.

Funder

Department of Science and Technology, Philippines

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3