Optimizing the friction behavior of medium entropy alloy via controllable coherent nanoprecipitation

Author:

Kong Jiyun,Fang Qihong,Li JiaORCID

Abstract

Abstract In recent years, FeCrNi medium entropy alloy, a new material with high hardness, strength, ductility, and wear resistance, has been widely studied. In this work, the effect of precipitation volume fraction on the friction behavior of FeCrNi is studied by molecular dynamics simulation. With the increase of precipitation volume fraction, the average friction coefficient shows an upward trend. When the volume fraction of precipitation is between 2.33% and 3.10%, the wear resistance of FeCrNi would be enhanced after the nanoscratching, and the normal force is large, which means that a certain precipitation volume fraction strengthens FeCrNi. Low precipitation volume fraction can effectively reduce the wear volume and wear rate during scratching, thus effectively lowering frictional force and friction coefficient. The interaction between dislocation and precipitation is an important factor that hinders dislocation propagation, leading to the strong dislocation strengthening and the increase of wear volume. This trend is manifested as the increase of normal force and frictional force. The frictional properties of FeCrNi can be optimized with a certain precipitation volume fraction. The findings give a guiding significance for the effect of multiple precipitation on frictional properties of FeCrNi.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3