Author:
Yang Muxin,Yan Dingshun,Yuan Fuping,Jiang Ping,Ma Evan,Wu Xiaolei
Abstract
Ductility, i.e., uniform strain achievable in uniaxial tension, diminishes for materials with very high yield strength. Even for the CrCoNi medium-entropy alloy (MEA), which has a simple face-centered cubic (FCC) structure that would bode well for high ductility, the fine grains processed to achieve gigapascal strength exhaust the strain hardening ability such that, after yielding, the uniform tensile strain is as low as ∼2%. Here we purposely deploy, in this MEA, a three-level heterogeneous grain structure (HGS) with grain sizes spanning the nanometer to micrometer range, imparting a high yield strength well in excess of 1 GPa. This heterogeneity results from this alloy’s low stacking fault energy, which facilitates corner twins in recrystallization and stores deformation twins and stacking faults during tensile straining. After yielding, the elastoplastic transition through load transfer and strain partitioning among grains of different sizes leads to an upturn of the strain hardening rate, and, upon further tensile straining at room temperature, corner twins evolve into nanograins. This dynamically reinforced HGS leads to a sustainable strain hardening rate, a record-wide hysteresis loop in load−unload−reload stress−strain curve and hence high back stresses, and, consequently, a uniform tensile strain of 22%. As such, this HGS achieves, in a single-phase FCC alloy, a strength−ductility combination that would normally require heterogeneous microstructures such as in dual-phase steels.
Funder
National Key R&D Program of China
Strategic Priority Research Program of the Chinese Academy of Science
National Science Foundation of China
U.S.-DOE-BES, Division of Materials and Engineering
Publisher
Proceedings of the National Academy of Sciences
Cited by
398 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献