Anisotropic failure behavior of ordered intermetallic TiAl alloys under pure mode-I loading

Author:

Neogi AnupamORCID,Alam Masud,Hartmaier AlexanderORCID,Janisch RebeccaORCID

Abstract

Abstract Whether a metallic material fractures by brittle cleavage or by ductile rupture is primarily governed by the competition between cleavage and dislocation emission at the crack tip. The linear elastic fracture mechanics (LEFM) based criterion of Griffith, respectively the one for dislocation emission of Rice, are sufficiently reliable for determining the possible crack tip propagation mechanisms in isotropic crystalline metals. However, the applicability of these criteria is questionable when non-cubic, anisotropic solids are considered, as e.g. ordered intermetallic TiAl phases, where slip systems are limited and elastic anisotropy is pronounced. We study brittle versus ductile failure mechanisms in face-centered tetragonal TiAl and hexagonal Ti3Al using large-scale atomistic simulations and compare our findings to the predictions of LEFM-based criteria augmented by elastic anisotropy. We observe that the augmented Griffith and Rice criteria are reliable for determining the direction dependent crack tip mechanisms, if all the available dislocation slip systems are taken into account. Yet, atomistic simulations are necessary to understand crack blunting due to mixed mechanisms, or shear instabilities other than dislocation emission. The results of our systematic study can be used as basis for modifications of the Griffith/Rice criteria in order to incorporate such effects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3