Crack configuration influence on fracture behavior and stress shielding: insights from molecular dynamics simulations

Author:

Şen O CORCID,Janisch RORCID

Abstract

Abstract The fracture behavior of the Ti–Al alloy is significantly affected by its nano-lamellar structure. However, further investigation is still required to fully comprehend how the initial crack configuration influences the lamellar Ti–Al’s deformation behavior. Although molecular dynamics simulations are a great way to study crack-tip interactions in interface-dominated microstructures, the design of the simulation can have an impact on the behavior that is predicted. To shed light on this matter and at the same time to understand the impact of the specific interface structure, a systematic study of crack-tip interface interactions in nano-lamellar two-phase Ti–Al was carried out. The type of interface and crack configuration were varied in these simulations to distinguish between the effects of the microstructure and the crack geometry. Results show that the semi-coherent pseudo twin ( γ / PT) interface is the strongest barrier for crack propagation while the coherent true twin interface ( γ / TT) is the weakest. After a thorough review of the contributing factors, it is evident that the orientation of the crack has a greater impact on its propagation than the aspect ratio of the crack. The stress shielding effectiveness of lamellar interfaces is strongly dependent on the crack configuration. However, regardless of the initial crack set-up, the coherent γ / TT interface appears to be the most effective interface in terms of shielding.

Publisher

IOP Publishing

Reference29 articles.

1. Gamma titanium aluminide alloys science and Technology;Appel,2011

2. Experimental research on the electrochemical machinability of selected γ-TiAl alloys for the manufacture of future aero engine components;Klocke;Proc. CIRP,2015

3. Economic net-shape forming of TiAl alloys for automotive parts;Sung;Intermetallics,2006

4. Lamellar orientation control in directionally solidified TiAl intermetallics;Su;China Foundry,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3