Influence of thermal annealing on the morphology and magnetic domain structure of Co thin films

Author:

Li MuchanORCID,Tian Zhongzheng,Yu Xuemin,Yu Dachen,Ren Liming,Fu Yunyi

Abstract

Abstract Centimeter scale cobalt films with various thicknesses (8 nm ∼ 100 nm) were deposited by electron beam evaporation (EBE) and then annealed in a gas mixture of Ar and H2 at temperatures ranging from 200 °C to 500 °C. Advanced characterization techniques (e.g., XRD, SEM, AFM and MFM) were employed to investigate the influence of annealing on the morphology, crystal structures and magnetic domain structures of Co thin films. The results of SEM and AFM suggest that there is no obvious change in the morphology of Co film before and after annealing especially for thicker films and the root-mean-square roughness of Co film surface is slightly reduced after annealing. The influence of thermal annealing on the magnetic domain structure of EBE Co thin films was investigated by magnetic force microscopy (MFM) for the first time. It is found that even if there is no clear domain structure in the as-deposited films, it is possible to obtain periodic stripe domains with perpendicular magnetic anisotropy (PMA) by thermal annealing owing to the development of HCP Co phase, which was confirmed by XRD analysis. The correlations between the film morphology, thickness and magnetic domain structure are discussed qualitatively. Based on the periodic stripe magnetic domains, the domain-wall energy density of annealed cobalt films is calculated and this study found that the annealing has almost no effect on the energy density of the domain-wall. This work provides an effective way to obtain the perpendicular magnetic anisotropy (PMA) for practical applications.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3