Cobalt-Activated Transfer-Free Synthesis of the Graphene on Si(100) by Anode Layer Ion Source

Author:

Bener Greta,Kopustinskas Vitoldas,Guobienė AstaORCID,Vasiliauskas Andrius,Andrulevičius MindaugasORCID,Meškinis ŠarūnasORCID

Abstract

In this research, the graphene was grown directly on the Si(100) surface at 600 °C temperature using an anode layer ion source. The sacrificial catalytic cobalt interlayer assisted hydrocarbon ion beam synthesis was applied. Overall, two synthesis process modifications with a single-step graphene growth at elevated temperature and two-step synthesis, including graphite-like carbon growth on a catalytic Co film and subsequent annealing at elevated temperature, were applied. The growth of the graphene was confirmed by Raman scattering spectroscopy and X-ray photoelectron spectroscopy. The atomic force microscopy and scanning electron microscopy were used to study samples’ surface morphology. The temperature, hydrocarbon ion beam energy, and catalytic Co film thickness effects on the structure and thickness of the graphene were investigated. The graphene growth on Si(100) by two-step synthesis was beneficial due to the continuous and homogeneous graphene film formation. The observed results were explained by peculiarities of the thermally, ion beam, and catalytic metal activated hydrocarbon species dissociation. The changes of the cobalt grain size, Co film roughness, and dewetting were taken into account.

Funder

European social fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3