Effect of carrier doping on the electronic states of earth-abundant Fe–Al–Si thermoelectric materials

Author:

Tsuda ShunsukeORCID,Yoshinari AsakoORCID,Takezawa Shingo,Ohishi Kenta,Nagamura NaokaORCID,Zhang Wenxiong,Iwasaki Yutaka,Takagiwa Yoshiki

Abstract

Abstract Fe–Al–Si-based thermoelectric (FAST) materials are non-toxic and low-cost materials that can be used for autonomous power supplies to drive internet-of-things wireless sensor devices. The conduction type can be controlled by changing the Al/Si ratio, which is suitable for fabricating reliable thermoelectric power-generation modules consisting of materials with similar thermal expansion coefficients. In this work, we evaluated the electronic structures of p- and n-type FAST materials with relatively large absolute values of the Seebeck coefficient by photoemission spectroscopy to obtain deeper insight into controlling the p-n characteristics of FAST materials. The core-level spectra suggested that the FAST materials have a covalent bonding nature. The chemical-potential shift should be the dominant factor of the core-level shift, which is consistent with the expected behavior of carrier doping of thermoelectric semiconductors, that is, rigid-band-like behavior. The size of the core-level shift of ∼0.15 eV is close to the band gap of ∼0.18 eV obtained from transport measurements. The observed electronic structure can qualitatively explain the experimental results.

Funder

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

JST PRESTO

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3