Transport properties of binary phosphide AgP2 denoting high Hall mobility and low lattice thermal conductivity

Author:

Miyata MasanobuORCID,Koyano Mikio

Abstract

Abstract This study found that polycrystalline AgP2 shows intrinsic semiconducting electrical conductivity with Hall mobility of 51 cm2 V−1 s−1, which is as high as that of Mg2Si, and lattice thermal conductivity of 1.2 W K−1 m−1, which is as low as that of Bi2Te3. First-principles calculations theoretically indicate AgP2 as an intrinsic semiconductor, and indicate the estimated carrier relaxation time τ as 3.3 fs, which is long for a polycrystalline material. Moreover, the effective mass of hole m* is approximately 0.11 times that of free electrons. These results indicate that long τ and light m* of the carrier are the origins of the high experimentally obtained Hall mobility. Phonon calculations indicate that the Ag atoms in AgP2 exhibit highly anharmonic phonon modes with mode Grüneisen parameters of more than 2 in the 50–100 cm−1 low-frequency range. The large anharmonic vibrations of the Ag atoms reduce the phonon mean free path. Moreover, the lattice thermal conductivity was found, experimentally and theoretically, to be as low as approx. 1.2 W K−1 m−1 at room temperature by phonon–phonon and grain-boundary scattering.

Funder

JSPS KAKENHI

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3