An active visual monitoring method for GMAW weld surface defects based on random forest model

Author:

Zhu Caixia,Yuan HaitaoORCID,Ma GuohongORCID

Abstract

Abstract In the automatic manufacturing of robotic welding, real-time monitoring of weld quality is a difficult problem. Meanwhile, due to volatilization of zinc vapor in galvanized steel and complexity of welding process, the existence of welding defects greatly affects industrial production process. And real-time detection of welding defects is a key step in development of intelligent welding. To realize real-time monitoring of weld surface defects, an active visual monitoring method for weld surface defects is proposed. Firstly, after applying Gabor filter to remove interference signals such as arc and noise, obtain weld centerline image; then employ the slope analysis method to extract peak valley coefficient of weld defects, extract five feature points of weld surface quality by Douglas-Puke algorithm, and analyse geometric and spatial distribution features of different types of defects in weld laser stripe images. Finally, using eight feature vectors extracted from weld features, design a weld defect recognition random forest model based on decision tree. After optimizing the decision tree depth and number of model evaluators, compared with the traditional decision tree ID3 and CART algorithm model, this model has better performance than traditional machine learning algorithms on five weld surface defect data sets. The experimental results show that accuracy of weld defect identification in the training set is 99.26%, accuracy of weld defect recognition in the test set is 96%, and processing time of a single image is only 5.3 ms, which overcomes difficulty of real-time weld defect detection in intelligent welding and ensures real-time and accuracy.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3