Real-Time Detection of Weld Defects for Automated Welding Process Base on Deep Neural Network

Author:

Shin SeungminORCID,Jin Chengnan,Yu Jiyoung,Rhee Sehun

Abstract

In the process of welding zinc-coated steel, zinc vapor causes serious porosity defects. The porosity defect is an important indicator of the quality of welds and degrades the durability and productivity of the weld. Therefore, this study proposes a deep neural network (DNN)-based non-destructive testing method that can detect and predict porosity defects in real-time, based on welding voltage signal, without requiring additional device in gas metal arc welding (GMAW) process. To this end, a galvannealed hot-rolled high-strength steel sheet applied to automotive parts was used to measure process signals in real-time. Then, feature variables were extracted through preprocessing, and correlation between the feature variables and weld porosity was analyzed. The proposed DNN based framework outperformed the artificial neural network (ANN) model by 15% or more. Finally, an experiment was conducted by using the developed porosity detection and prediction system to evaluate its field application.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference20 articles.

1. Arc welding technology for automotive steel sheets;Kodama;Nippon Steel Tech. Rep.,2013

2. CO2welding of galvanized steel

3. Joining technologies for automotive steel sheets

4. Porosity Characteristics and Effect on Tensile Shear Strength of High-Strength Galvanized Steel Sheets after the Gas Metal Arc Welding Process

5. The statistical models for estimating the amount of spatter in the short circuit transfer mode of GMAW;Kang;Weld. J.,2001

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3