Evolution mechanism of cyclized structure of PAN-based pre-oxidized fiber during low temperature carbonization process

Author:

Wang Bin,Wu Shuai,Li ChenggaoORCID,Cao Weiyu

Abstract

Abstract The low temperature carbonization process is an important stage to realize the structural transition from the organic cyclized structure of PAN based pre-oxidized fiber to the inorganic pseudo-graphite structure of the ultimate carbon fiber. In the present paper, the evolution mechanism of cyclized structure and aggregation structure of PAN stabilized fiber during low temperature carbonization was studied by means of TGA, 13C-NMR, XRD, XPS and Raman. The results indicated that when the heat-treated temperature was lower than 450 °C, the mainly chemical reactions were the dehydrogenation and pyrolysis reactions in acyclic linear molecular chain or partial cyclized structure. At this stage, the growth of cyclized structure was not obvious. While the original ordered structure was destroyed gradually and the internal stress increased significantly. It induced the cyclized structure to be further oriented. When the temperature was higher than 450 °C, the polycondensation and reconstruction in aromatic heterocyclic structure was more important. The early aromatic heterocycles had many different structural scales, poor homogeneity and many defects in the heterocycles. At this stage, a new pseudo-graphite crystalline structure gradually formed and the d-spacing of graphite layer decreased slightly and crystallites size increased slowly with the increase of heat-treated temperature. When the temperature was higher than 550 °C, the pseudo-graphite base structure gradually formed. The d-spacing were further reduced slightly, and the crystallites size increased slowly. A new ordered basis structure was gradually developed into carbon fiber.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. Time dependent structure and property evolution in fibres during continuous carbon fibre manufacturin;Nunna;Materials,2019

2. Introduction of a methodology to enhance the stabilization process of PAN fibers by modeling and advanced characterization;Konstantopoulos;Materials,2020

3. Simultaneous DSC/TG analysis on the thermal behavior of PAN polymers prepared by aqueous free-radical polymerization;Ouyang;Polymer Degradation & Stability,2016

4. The formation and evolution of cycstalline structure of carbon fiber;Kong;Polym. Bull.,2016

5. The effects of gamma ray on cyclization and crosslinking of polyacrylontrile fibers and structure and properties of carbon fibers;Zhao,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3