Introduction of a Methodology to Enhance the Stabilization Process of PAN Fibers by Modeling and Advanced Characterization

Author:

Konstantopoulos George,Soulis Spyros,Dragatogiannis Dimitrios,Charitidis CostasORCID

Abstract

A methodology for designing the oxidative stabilization process of polyacrylonitrile (PAN) fibers is examined. In its core, this methodology is based on a model that describes the characteristic fiber length variation during thermal processing, through the de-convolution of three main contributors (i.e., entropic and chemical shrinkage and creep elongation). The model demonstrated an additional advantage of offering further insight into the physical and chemical phenomena taking place during the treatment. Validation of PAN-model prediction performance for different processing parameters was achieved as demonstrated by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Τensile testing revealed the effect of processing parameters on fiber quality, while model prediction demonstrated that ladder polymer formation is accelerated at temperatures over 200 °C. Additionally, according the DSC and FTIR measurements predictions from the application of the model during stabilization seem to be more precise at high-temperature stabilization stages. It was shown that mechanical properties could be enhanced preferably by including a treatment step below 200 °C, before the initiation of cyclization reactions. Further confirmation was provided via Raman spectroscopy, which demonstrated that graphitic like planes are formed upon stabilization above 200 °C, and thus multistage stabilization is required to optimize synthesis of carbon fibers. Optical Microscopy proved that isothermal stabilization treatment did not severely alter the cross section geometry of PAN fiber monofilaments.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3