Influence of silicon-dioxide nanoparticles in cementitious mortars: verification using x-ray diffraction, thermal analysis, physical, and mechanical tests

Author:

Andrade F K GORCID,Pires T A CORCID,Silva J J RORCID

Abstract

Abstract In recent years, nanotechnology has been applied to building materials, such as cementitious composites (e.g., mortar and concrete), to improve their properties. The aim of this study was to analyze the thermal, physical, and mechanical properties of mortars with and without silicon-dioxide (SiO2) nanoparticles. Experiments such as thermogravimetry and differential thermal analysis (TG-DTA), x-ray diffraction (XRD), fresh density, incorporated-air content, bulk density, capillary absorption, capillarity coefficient, flexural tensile strength, and compressive strength on prismatic specimens were performed on mortars and analyzed for different levels of nanosilica (nS). These levels were 1% and 3%, in addition to the reference mortar (0% nS). The TG-DTA curves showed an elevated content of chemically combined water and a lower content of calcium hydroxide (Ca(OH)2) in the 3% nS compositions, while the XRD curves presented a lower content of calcite and portlandite in the same mortar. These results indicate the fixation capacity of lime for the formation of calcium silicate hydrate (C-S-H), which is the primary cause of resistance in cementitious mortars. In addition, it was found that the use of nanosilica contributed to a fresh density increase of approximately 15%, which caused a minimum air-incorporated content decrease of 37% and a minimum bulk density increase of 10%. Higher densities resulted in a minimum water absorption reduction of 36%, owing to fewer pores in the mortars. Therefore, the capillarity coefficient decreased by a minimum of 41%. These nanoparticles also improved the minimum flexural tensile and compressive strengths by 88% and 158%, respectively, when using a 3% nS composition. These results can enable the use of lightweight aggregates in cementitious composites, improving their physical and mechanical characteristics and allowing greater reuse of these materials, including construction waste.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference42 articles.

1. Modification of lightweight aggregate concretes with sílica nanoparticles—a review;Federowicz;Materials,2021

2. A nanotecnologia aplicada às argamassas de revestimento;Flores-Colen;Tech ITT Estruturas e Construção,2013

3. Aplicações da nanotecnologia na construção civil: análise experimental em argamassa expansiva com nanotubos de carbono.;de Paulo;Pensar Engenharia,2015

4. Nanotubos de carbono em concretos de cimento Portland: influência da dispersão nas propriedades mecânicas e na absorção de água;Marcondes;Revista Alconpat,2015

5. Effect of nanomaterials in cement mortar characteristics;Al-Rifaie;Journal of Engineering Science and Technology,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3