Abstract
AbstractBoron-rich waste causes numerous environmental problems when discharged directly into the environment. Here, various quantities of boron oxide (B2O3) were added to calcium sulfoaluminate (C4A3$) during the sintering process to demonstrate a potential use of boron-rich waste. The microstructure and hydration performance of C4A3$ with various B2O3contents were investigated with scanning electron microscopy, x-ray diffraction, isothermal conduction calorimetry, thermogravimetric studies and compressive strength tests. B2O3-doped C4A3$ had a larger grain size than the pure phase; and were surrounded by amorphous phases. The presence of B2O3was shown to promote the phase transition process through which C4A3$ changes from the orthorhombic to the cubic structure; and the substitution of Al3+for B3+in AlO4tetrahedra was surveyed by structural refinements. As the B2O3content increased, the induction period of C4A3$ increased while the hydration rate decreased because of the amorphous phases around the C4A3$. However, the hydration degree of doped C4A3$ increased due to the slower reaction rate. Thus, when an appropriate amount of B2O3was added to the C4A3$ during sintering, a significant improvement in the compressive strength of pastes was observed.
Funder
National Natural Science Foundation of China
Hunan Provincial Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献