Abstract
Abstract
In this study, one novel perfluoroalkyl silane with tetrafluoro-λ
6-sulfanyl bridging group named 4-(Tridecafluorohexyl sulfur tetrafluoride) Phenylethyl trichlorosilane (PFSTS) was successfully synthesized via fluorination and hydrosilylation. The structure was characterized by FT-IR and NMR Then, the product and the control subject 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) were finished onto PET fabrics through the method of dip-and-pad. The wettabilities of the treated PET fabrics were characterized by Water Contact Angles (WCA) and surface free energies measurements. X-ray Photo electron Spectroscopy (XPS) was used to validate the attachment, together with the chemical composition of the polymers on the surface of treated PET fabrics. The WCAs of PFOTS@PET and PFSTS@PET were 142.2°, 137.3°, while the WCA of untreated PET fabrics is 120° in general, indicating that PFTOS and PFSTS can provide good hydrophobicity by finishing PET fabrics. After the 48 h exposure to accelerated agingUV irradiation, sample of PFSTS@PET show a decreased CA value by 12.5% from 137.3° to 120.1°, while for sample of PFOTS@PET, the percentage of reductionis only 2.8%. It was found that the perfluoroalkyl trichlorosilane that containing –SF4– bridged group exhibited excellent water-repellency properties and had higher potential to UV degrade as possessing weak bond energy of C–S bond, so the PFSTS might act as an eco-friendly alternative to carbon-chain perfluoroalkyl derivatives in water-repellency areas.
Funder
Priority Academic Program Development of Jiangsu Higher Education Institutions
National Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献