Abstract
Abstract
The great interest in the study of diamond-like carbon films (a-C:H) is justified by its mechanical and tribological properties. However, the high internal stress of the film results in its difficult adhesion to the metallic substrate, which can be solved by nitrogen incorporation in the a-C:H film, allowing a formed film of lower internal stress. The objective of this work is to evaluate the influence of flow (20, 30 and 40sccm), CH4/Ar ratio (90/10 and 70/30) and voltage (400, 500, 600 and 700 V) in the a-C:H formation. For the best condition of the film, we studied the effect of nitrogen incorporation in the hardness and wear resistance of the a-C:H(N), modifying the nitrogen percentage in the treatment at 10% to 60% N2. The treatments were carried out in the Ti6Al4V substrate by DC-PECVD for two hours. For good adhesion of the films on the substrate, a silicon interlayer must be produced. The increase in the voltage above 600 V increases the ID/IG and film thickness, causing its delamination, and the gas ratio did not influence the a-C:H characteristics. The a-C:H film deposited with 30 sccm, 90/10 and 500 V was characterized as a-C:H (hard), with properties such as the hardness of 17 GPa, 30% H, 39% sp3 and ID/IG ratio of 0.58. Since nitrogen reduced the deposition rate, the total gas flow for the production of a-C:H(N) was performed with 40 sccm. The Raman spectra of a-C:H(N) films showed changes in D band intensity and displacement in relation to the nitrogen-free film spectrum, evidencing the incorporation of nitrogen in the film. The XPS analysis showed the linear increase of the nitrogen incorporation in the a-C:H(N) film with the increase of the amount of the N2 gas in the treatment, which caused, in general, a decrease in the amount of C–C sp3 bonding, increasing the adhesion of the film in the substrate and not necessarily the low wear resistance of the formed film.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Reference67 articles.
1. Caracterização do diamante CVD depositado sob atmosfera com adição de baixa concentração de N2;Souza;RBAV,2008
2. Prediction of a novel carbon allotrope from first-principle calculations: a potential superhard material in monoclinic symmetry;Li;Mat. Chemist. and Phys.,2020
3. Diamond-like amorphous carbon;Robertson;Mat. Sci. and Eng.,2002
4. Influence of nitrogen on the growth of diamond thin films by microwave plasma assisted chemical vapour deposition;Vandevelde,2000
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献