Abstract
Abstract
The effects of Nb concentration and temperature on the generalized stacking fault energy (GSFE) of basal, prismatic I, pyramidal I and II plane for Zr-Nb alloys are investigated by molecular dynamics simulations (MD). The stable and unstable SFEs of different slip systems show no significant change with the increasing Nb concentration (0, 0.5, 1.0, 1.5, 2.0, and 2.5 at.%) in Zr-Nb alloys at 0 K. Basal, pyramidal I and II planes slip of Zr-Nb alloys prefer to deform by full dislocation with the temperature increases. Additionally, plastic deformation anisotropy of Zr-Nb alloy is improved with the increasing temperature using both embedded atom method (EAM) and angular-dependent potentials (ADP). The present work provides a theoretical basis for understanding enhanced plasticity of Zr-Nb alloys under finite temperature.
Funder
National Key Research
Leading and Innovation Program of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献