Abstract
Abstract
We vary the substrate temperature by adjusting the nitrogen flow rate and jet-substrate distance during nitrogen atmospheric-pressure plasma jet (APPJ) processing of screen-printed reduced graphene oxides (rGOs) on carbon cloth. The APPJ-processed rGOs on carbon cloth are then used as electrodes for supercapacitors. Increasing the nitrogen flow rate could reduce the gas temperature and enhance the reactivity of the reactive plasma species. Typically, lowering the temperature slows down the chemical reaction; however, increased reactivity of the reactive plasma species at the same jet-substrate distance could compensate the temperature effect. A nitrogen APPJ could improve the wettability of the screen-printed rGOs on carbon cloth. We found that 20-s APPJ treatment increases the areal capacitance from 6.2 mF cm−2 (without APPJ treatment) to 22.4 mF cm−2 (700 °C, 30 slm), as evaluated by galvanostatic charging/discharging (GCD) measurements under a constant current of 0.25 mA. Further, 20-s nitrogen APPJ processing at temperatures of ∼600 °C–700 °C could obtain the best areal capacitance value. The capacitance value of the fabricated flexible rGO supercapacitor remains at similar level after 1000-cycle mechanical bending test with a bending radius of 5 mm.
Funder
Ministry of Science and Technology, Taiwan
Ministry of Education, Taiwan
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献