Hydrothermally Reduced Graphene Oxide–Coated Carbon Cloth for Flexible Supercapacitors

Author:

Rajaputra Subhakaran Singh1,Nagalakshmi P.1,Yerramilli Anjaneyulu1,Naga Mahesh K.2

Affiliation:

1. Centre for Advanced Energy Studies and Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522 502, India

2. Centre for Advanced Energy Studies, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522 502, India

Abstract

Abstract Hydrothermally synthesized graphene (HRG) was tested for its supercapacitive behavior using nickel (Ni) and hydrothermally treated carbon cloth as current collectors, respectively. Performance evaluation studies were carried out in an in-house fabricated SS cell. Commercially obtained untreated carbon cloth (CCUn) was exfoliated via oxidation (CCOx) followed by hydrothermal treatment to obtain a reduced carbon cloth (CCHy). The physicochemical and electrochemical properties of carbon cloth by oxidative exfoliation and hydrothermal treatment have been studied using scanning electron microscope, X-ray diffraction, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller surface area, Contact angle measurements, cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and EIS. HRG coated on the CCHy (HRG-CCHy) had shown superior performance and endurance compared to HRG coated on Ni strip (HRG-Ni), with distinguishable specific capacitances (Cs) of 170 and 134 F g−1 at 0.5 A g−1 current density, respectively. At a higher 10 A g−1 current density, HRG-CCHy, and HRG-Ni have displayed distinctive specific capacitances of 120 and 80 F g−1, respectively, indicating a comparative decline in the performance of HRG-Ni with respect to HRG-CCHy. Endurance study performed for 5000 cycles at 2 A g−1, resulted in HRG-CCHy and HRG-Ni, retaining 88% and 81% of their initial-specific capacitances. At 1 kW kg−1 of power density, HRG-CCHy displayed a 5.5 Wh kg−1 of energy density. The electrochemical performance of HRG-CCHy may be attributed to exceptional properties like high wettability, low impedance, high pore volume, and specific surface area.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3