Polyvinyl alcohol nanofibrous mat impregnated with ClCNTs/Fe2O3 nanocomposite for absorption of diesel oil in water

Author:

Motlokoa Teboho RORCID,Ngodwana LonwaboORCID,Maboya Winny KORCID

Abstract

Abstract Oil contamination is one of the main sources of water pollution in the world. In this study, a sorption material that showed great promise as an absorbent for diesel oil in aqueous solution was developed. Chlorinated carbon nanotubes (CNTs) previously synthesized using a chemical vapor deposition (CVD) method were loaded with iron oxide nanoparticles via a co-precipitation method. The sorption materials were prepared by embedding ClCNTs/Fe2O3 nanocomposite into a polyvinyl alcohol (PVA) polymer matrix via electrospinning. The PVA mat containing only ClCNTs was also prepared for comparison and the maximum sorption capacity of 9.7 g g−1 was obtained. The optimum concentration of ClCNTs/Fe2O3 nanocomposite that gave uniform, and well-distributed nanofibers was 0.5 wt%. Crosslinking the PVA/ClCNTs/Fe2O3 nanofiber mat with glutaraldehyde (GA) resulted in increased absorption capacity for oil of ∼ 9.4 g g−1 in comparison with an absorption capacity of ∼ 7.6 g g−1 attained with a pure nanofiber mat. The crosslinked nanofiber mat remained stable even after 60 min of oil absorption which proves that crosslinking assisted in increasing the affinity of PVA for oil by reducing the amount of OH groups through acetal formation making PVA less soluble to water. The oil sorption capacity of the prepared materials was not maintained even after two cycles indicating poor reusability.

Funder

National Research Foundation

Publisher

IOP Publishing

Reference69 articles.

1. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity;Liotta;J. Hazard. Mater.,2009

2. An analysis of demand and supply of water in India;Bhat;J. Environ. Earth Sci.,2014

3. Earth’s water reservoirs in a changing climate;Stephens;Proc. Math. Phys. Eng. Sci.,2020

4. Oil refinery and water pollution in the context of sustainable development: developing and developed countries;Radelyuk;J. Clean. Prod.,2021

5. Treatment of petroleum hydrocarbon pollutants in water;Samanta,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3