Composite structure-based transparent ultra-broadband metamaterial absorber with multi-applications

Author:

Liu Rui,Zhang BinzhenORCID,Duan JunpingORCID,Dong Lin,Yu JuanORCID,Zhang Zhonghe

Abstract

Abstract In this paper, an approach is proposed to realize optically transparent metamaterial absorber (OTMA) with ultra-broadband absorption properties by using composite resonant structure. The indium tin oxide (ITO) resistive film is used to construct the resonant structure to induce high ohmic loss and broaden the bandwidth of the resonances, thus achieves more than 90% absorptivity in the wide bandwidth of 8–30.3 GHz, which can cover the X and Ku bands of the airborne and surveillance radar signal frequencies. The novelty of designed structure lies in the properties of larger absorption bandwidth (covering X, Ku, K and part of Ka bands), lower thickness, and absorption capacity over a wide range of incident angles. Moreover, by replacing the intermediate air spacer with polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA) dielectrics, the OTMAs that can be used for conformal applications and rigid window glass of stealth armament are designed. This strategy provides more flexibility for the applications of broadband OTMA in different occasions, and has potential application prospects in radar stealth system, EM shielding and transparent RF equipment fields. The average optical transmittance of the whole structure in the visible light range exceeds 78%.

Funder

National Defense Pre-Research Foundation of China

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

National Natural Science Foundation of China

Shanxi “1331 Project” Key Subjects Construction

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3